Category Archives: crane physics

Mechanical Principles of Cranes


There are three major considerations in the design of cranes. First, the crane must be able to lift the weight of the load; second, the crane must not topple; third, the crane must not rupture.


Lifting capacity

Cranes illustrate the use of one or more simple machines to create mechanical advantage.

The lever. A balance crane contains a horizontal beam (the lever) pivoted about a point called the fulcrum. The principle of the lever allows a heavy load attached to the shorter end of the beam to be lifted by a smaller force applied in the opposite direction to the longer end of the beam. The ratio of the load’s weight to the applied force is equal to the ratio of the lengths of the longer arm and the shorter arm, and is called the mechanical advantage.

The pulley. A jib crane contains a tilted strut (the jib) that supports a fixed pulley block. Cables are wrapped multiple times round the fixed block and round another block attached to the load. When the free end of the cable is pulled by hand or by a winding machine, the pulley system delivers a force to the load that is equal to the applied force multiplied by the number of lengths of cable passing between the two blocks. This number is the mechanical advantage.

The hydraulic cylinder. This can be used directly to lift the load or indirectly to move the jib or beam that carries another lifting device.

Cranes, like all machines, obey the principle of conservation of energy. This means that the energy delivered to the load cannot exceed the energy put into the machine. For example, if a pulley system multiplies the applied force by ten, then the load moves only one tenth as far as the applied force. Since energy is proportional to force multiplied by distance, the output energy is kept roughly equal to the input energy (in practice slightly less, because some energy is lost to friction and other inefficiencies).

The same principle can operate in reverse. In case of some problem, the combination of heavy load and great height can accelerate small objects to tremendous speed (see trebuchet). Such projectiles can result in severe damage to nearby structures and people. Cranes can also get in chain reactions; the rupture of one crane may in turn take out nearby cranes. Cranes need to be watched carefully.



For stability, the sum of all moments about any point such as the base of the crane must equate to zero. In practice, the magnitude of load that is permitted to be lifted (called the “rated load” in the US) is some value less than the load that will cause the crane to tip (providing a safety margin).

Under US standards for mobile cranes, the stability-limited rated load for a crawler crane is 75% of the tipping load. The stability-limited rated load for a mobile crane supported on outriggers is 85% of the tipping load. These requirements, along with additional safety-related aspects of crane design, are established by the American Society of Mechanical Engineers in the volume ASME B30.5-2007 Mobile and Locomotive Cranes.

Standards for cranes mounted on ships or offshore platforms are somewhat stricter because of the dynamic load on the crane due to vessel motion. Additionally, the stability of the vessel or platform must be considered.

For stationary pedestal or kingpost mounted cranes, the moment created by the boom, jib, and load is resisted by the pedestal base or kingpost. Stress within the base must be less than the yield stress of the material or the crane will fail.

Cranes AU
Cranes Australia
Crane Manufacturers Australia
Crane Manufacturers & Crane Hire AU – Buy or Hire Cranes.